Software Tools for Managing and Analyzing TMA Data

Contains documentation for the following:

The TMA-Deconvoluter Version 1.06 Usage Walkthrough

Stainfinder Version 1.00 Usage Walkthrough

> Compiled by Chih Long Liu 7-1-2002

Table of Contents

Terms and Conditions for Use	3
System Requirements	5
System Setup Walkthrough	6
TMA-Deconvoluter Walkthrough	7
Stainfinder Walkthrough	16
Additional Features of the TMA-Deconvoluter	21
Appendix	23
Raw Scoring Worksheet Format	23
Lookup File Format	26
Bliss File Name Nomenclature	27
Revision History	34
Frequently Asked Questions (FAQ)	36

Terms and Conditions for Use

Software is being provided free of charge, provided that:

- 1. User is affiliated with an academic or non-profit organization
- 2. User may not distribute any modified versions of the software or any of its accompanying documentation without prior consultation with the authors
- 3. User provides proper citation or acknowledgment if any of the software programs documented in this file are used in a paper that has been accepted for publication

Because the software is being provided free of charge, the authors do not claim responsibility for any damages, monetary or otherwise, stemming from misuse of this software.

Commercial interests must contact the authors for proper licensing arrangements prior to use.

Please refer to the TMA website, <u>http://genome-www.stanford.edu/TMA</u>, for correspondence information of the authors.

Overview

The TMA-Deconvoluter is a deconvolution program designed for tissue microarrays (TMAs) scanned with the Bliss microscope system. It facilitates conversion of raw scoring worksheets, formatted in a manner similar to the three-dimensional layout of the tissue microarrays, into the two-dimensional text tab-delimited format which has been optimized for hierarchical clustering with Mike Eisen's Cluster program. Output from this program permits analytical techniques such as clustering to be performed on tissue microarrays. Additionally, this program produces output that is compatible with a web-based image retrieval system based on the BLISS system and the Stainfinder program.

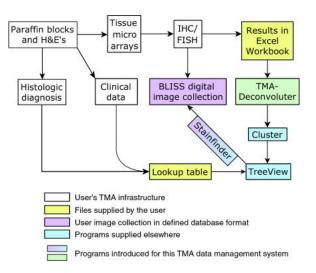
In this document, you will find instructions on how to set up a system for managing your TMA data in this fashion. You will find descriptions on producing or acquiring the necessary components of this system in this document. Afterwards, you will find instructions on the actual operation of the TMA-Deconvoluter and Stainfinder, along with the requisite components of this system.

For further details on how you can adapt the TMA-Deconvoluter and Stainfinder to manage your TMA needs, please refer to the corresponding paper:

Liu et al., "Software Tools for High-throughput Analysis and Archiving of Immunohistochemistry Staining Data Obtained with Tissue Microarrays," (2002), *in review*.

The instructions and documentation you will find here will largely overlap the contents of the TMA website, <u>http://genome-www.stanford.edu/TMA</u>. The only differences will involve features not documented in the website that relate to the finer points of operating the TMA-Deconvoluter.

Please note that important feature additions, changes, bug fixes, and any other changes affecting this TMA data management system will be updated on the website more frequently than in this documentation.


System Requirements

This is a quick summary of the items you will need to set up your data management system for your TMAs. You will be needing the following:

- Excel-format raw scoring workbooks representing data in the layout of your TMA. <u>More</u> on the format of these workbooks, in the Appendix..
- A lookup file, in text tabulated table format, containing your case descriptor information. <u>More</u> on the format of these workbooks, in the Appendix..
- The TreeView program. You will use this to rapidly visualize the scoring results of large sections of your TMA data. This program can be used in conjunction with Stainfinder. You can obtain TreeView at http://rana.lbl.gov/EisenSoftware.htm.
- The Cluster program. You will use this to perform hierarchical clustering analysis on your data, if desired. The files output by this program are designed to work with TreeView. You can obtain Cluster at http://rana.lbl.gov/EisenSoftware.htm.
- An on-line database of stored images. In the present configuration, the TMA-Deconvoluter and Stainfinder have been configured to work with image filenames defined by the nomenclature of the Bliss microscope system (Bacus Laboratories Inc.). Your database can run on the platform of your choice.
- A web server that is capable of running CGI programs written in PERL. The Stainfinder walkthrough will include instructions on setting up a web server. *Note: it is highly recommended that a system administrator or some other person experienced in networking and internet technologies set up the web server, since an improperly configured server can be vulnerable to attack by malicious users.*
- A Windows PC running Microsoft Excel 97 or later. This is necessary to run the TMA-Deconvoluter program. Note: the Mac OS is NOT supported, because the TMA-Deconvoluter makes the use of Active X controls, which are not available in Macintosh versions of Microsoft Office. See the FAQ section for details.

Once you have all of these components assembled, proceed to the <u>walkthrough</u> section.

Walkthrough

The diagram above provides an overview of the TMA data management system and where the various system components lie in relation to each other.

Once you have produced the necessary files (as outlined in yellow in the diagram above), proceed to the <u>walkthrough</u> for using the **TMA-Deconvoluter** to generate files for data analysis, and performing clustering analysis on your TMA data.

Afterwards, proceed to the <u>walkthrough</u> for setting up the **Stainfinder** to link datasets viewed under TreeView with the on-line Bliss digital image collection.

TMA-Deconvoluter Walkthrough

Note: if this is your first time using this TMA data management system, it is recommended that you proceed to the Downloads section of the TMA website, <u>http://genome-</u> <u>www.stanford.edu/TMA/download.shtml</u> and download the Demo Suite files. The examples presented in this walkthrough employ those files, and you should obtain the same results in using these files and with the other necessary programs available elsewhere.

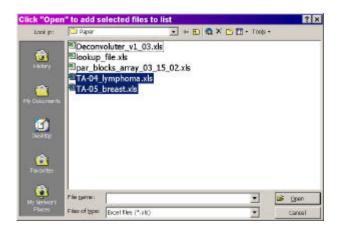
What you will need for this walkthrough:

- Raw scoring worksheets containing your TMA data
- A lookup file containing information about each case
- The TMA-Deconvoluter
- The Cluster program
- The TreeView program
- Microsoft Excel for Windows with Visual Basic support installed
- A Windows PC

Begin by storing a copy of the TMA-Deconvoluter, your raw scoring worksheets, and the lookup file in the same folder. (If you decide to put the files elsewhere, you will need to know how to specify the appropriate path information in the entry fields for those files).

You may now open the TMA-Deconvoluter. A dialog box might pop up before the TMA-Deconvoluter opens, asking you if you want to enable macros (as shown below). Click "Enable Macros". If you leave them disabled, the TMA-Deconvoluter will not run.

After opening the TMA-Deconvoluter, you should be greeted with the screen below:


	Eile Edit View Insert Format Tools Date	a <u>W</u> indow <u>H</u> elp	Acrobat			21	5 >
0.	🛎 🖬 🚳 🔍 🖇 🐚 🕲 🝼 🖓 - 🖓 - 🔮 🗉	A 24 34 10 - 3 1	00% - 🗊 .	Arial 🛛 🕶 10 👻	в / <u>ц</u> I	E B B 3-4	•15
	A4 - =						
	AB	С	D	E:	F	G	
1	TMA-Deconvoluter for Tis	sue Arrays	5				1
2	by Chih Long Liu	1	Version:	1.06			
3	A Tissue Microarray Data Management Too	1	Date:	6/1/2002			
4							
5	Program Macro Configuration	and Settings	3				
6	Please select an option below						
7	before running the deconvoluter:	Manual operat	ion:	To run, click on the button below,			
	C Decorvolute and output for clustering	Convert Sco	res	Run Deconvoluter			
8	C Deconvolute and output for K-M analysis	Transpos		Run Deconvoluter			
	C Run Deconvoluter manually			For manual operations, run the		ng Dir" will set the	
9	Dutput in Cluster-ready format	Output in Cluster-ready format		deconvoluter first before doing score conversion or file output.	working directory to the one that contains this deconvoluter.		
~	Output with x and y-axis transposed		1	Los and the second second second		And the state of the	1
10	🗖 Don't warn about missing Bliss info	Reset		Generate File List	Set Working Di		
11	Enter Name of paraffin lookup file (mus	t be in correct wo	orking directory):		Processed	Output worksheet	0.0
12	Ent	er names of files t	to be processed:				
13	(don'f leave	blank cells in bet	ween file names)		_		
14							-1
15 16	Score Conversion Utility	- total and the state					- 1
10	(Initial values, as they appear as b Old Scores	New Scores			-		-1
18	0	0					
19	1	1					
20	2	2					
21	3	3					
22	► N\Control						a suf
	aw - 🖟 🕘 AutoShapes - 🔪 🔍 🖂 🖓 🖪	101 A. d. A.		121		Terrature coston coston	1211
-	ady Autosnapes • • • • • • • • • • • • • • • • • • •	m				UM	

Excel normally sets the current working directory based on your default settings, which may not necessarily be the directory containing the TMA-Deconvoluter and the other files that you placed in that folder. **Click on "Set Working Dir"** (right portion of screenshot) to set the working directory to be the container for your TMA files. You may see a dialog box indicating the current working directory and the new working directory, and it will request whether this is correct. Click "Yes" or "No" to continue.

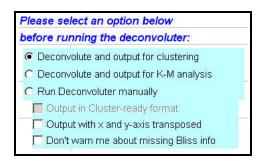
Specifying your input files

You now need to specify the name of the "paraffin" lookup file. Enter the full exact filename, including the extension, in the pale green worksheet cell. (The version available for download comes prepared for operation with the demo files.) Alternatively, you can click on the "Generate File List" button and select your file from a menu (see below).

Specify the names of your raw scoring workbooks in the light blue worksheet cells. The TMA-Deconvoluter is capable of batch operation, so you can process multiple files at a time. A helpful feature is file list generation, where instead of having to type in all the file names of the list of files you wish to process, you can graphically select the desired files in your folder. To do this, click on "Generate File List". An Open file dialog box will appear below:

Select files by clicking and dragging. To select multiple files that are not listed next to each other, hold down the Ctrl key while selecting the desired files, either with the mouse or by using the arrow keys and the spacebar. **Click "Open"** to add those files to your list.

You will now see an additional dialog box asking whether or not you wish to specify the lookup file. If you click "Yes", you will get another Open file dialog box very similar to the one above, except that you will be allowed to select only one file at a time. Select your lookup file and click "Open" to add the file name in the light green worksheet cell.


Selecting Output Options

Optional: You may specify the names of the output files, which will be in text tab-delimited format. Specify the names of the output files (without the **.txt** extension) in the appropriate cells (see below).

lookup_file.xls	Processed	Output worksheet	Output filenames
TA-04_lymphoma.xls			4
TA-05_breast.xis			5

As shown in the example above, the output from TA-04_lymphoma.xls will be outputted to the file 4.txt. Output from TA-05_breast.xls will be outputted to the file 5.txt. A later section of the walkthrough will further describe the "Processed" and "Output worksheet" cells.

Now, choose an output option (such as that shown below).

For clustering, the default is shown above. The next step in this walkthrough will also show what the output will look like if you had chosen the K-M output option.

A note on scores: the TMA-Deconvoluter will assume that you are using the following scoring convention:

Score	Description	Treeview score	Appearance under Treeview
	Missing datapoint		
0	Negative	-2	
1	equivocal/uninterpretable		
2	weak	1	
3	strong	2	

Please note that our initial scoring system was as follows: 0 = negative, 1 = uninterpretable/equivocal, 2 = weakly positive, 3 = strongly positive. The score conversion utility allows us to automatically convert these values to values that are symmetric around zero. In this case negative becomes -2, an uninterpretable score (old score= 1) will be left open in the new scores and subsequently will show a gray box in Treeview. Weakly positive (old score = 2) will become 1 and strongly positive (old score = 3) will become 2. Accordingly, the default scoring conversion values have been set in this way:

Score Conversion Utility	
(Initial values, as they appear	as below, are default,
Old Scores	New Scores
0	-2
1	
2	1
3	2

Score conversion can be carried out separately under manual operation, but you will need to select the "Run Deconvoluter manually" option and **Run Deconvoluter** first before converting the scores.

To run, click on the button below	
Run Deconvoluter	
For manual operations, run the decompleter first before doing score	

You are now ready to run the Deconvoluter. Click on the button as shown above.

After the TMA-Deconvoluter has completed its operation, you will find yourself back at the main screen of the TMA-Deconvoluter (at the "Control") worksheet. You will notice that the

output appears in additional worksheets within the TMA-Deconvoluter, and that a report of the activity of the TMA-Deconvoluter appears, as shown below:

Processed	Output worksheet	Output filenames
yes	Output(1)	4
yes	Output(2)	5
	yes	yes Output(1)

The "Processed" column indicates whether or not the raw scoring workbook was successfully processed. The "Output worksheet" column indicates the name of the worksheet within the TMA-Deconvoluter that contains the output data, and the "Output filenames" column contains the file names of the output files. If you had specified your own filenames, these would remain unchanged, and the corresponding files (4.txt, 5.txt in this example) would appear in the current working directory. If you had not specified any file names, the file names will be the same as the worksheet names.

Opening one of the output file names, or clicking on the corresponding worksheet tab within the TMA-Deconvoluter, should result in the screen below (if you had chosen to output in the PCL format):

-	Eile Edit View Insert Format]		Sec.			_ = =)
	●■●▲♥ ★ № 8 √ • - 0	📽 x & \$1 \$1 🛍 10	0% - 🗐	" Ari	al	
	A1 UID					20
	A	В	C	D	E	F
	UID	NAME	GWEIGHTE	xel2	mib1 i	mum1-yn-
-	EWEIGHT				1	
	1_4_1_1_34_1012_1.jpgl164lbcl2lm			0		0
	1_4_2_1_34_1012_2.jpg16191bcl2lm	and present the second s		0	0	0
5	1_4_3_1_34_1012_3.jpgi115!bcl2in	hit 115 lymph node norma	1		्य	
6	1_4_4_1_34_1012_4.jpgi116lbci2in	hit 116 lymph node norma	1	2		1
	1_4_5_1_34_1012_5.jpgl168lbcl2lm			2	2	
8	1_4_6_1_34_1012_6 jpg1126lbcl2lm	hit 126 lymph node norma	S 31	2	2	1
9	1_4_7_1_34_1012_7.jpg/976/bc/2/m	ut 975 spieen normai no	1		1	-2
10	1_4_8_1_34_1012_8.jpgi258lbcl2ln	nit 258 skin malignant m	1	2	1	1
11	1_4_9_1_34_1012_9.jpgl260lbcl2lm	it 260 skin malignant m	1	1	1	1
12	1_4_10_1_34_1012_10.jpgl106lbcl2	2ir 106 breast malignant	1	0	0	0
13	1_4_11_1_34_1012_11.jpg/95lbcl2l	m 95 breast malignant d	1		D	0
14	1_4_1_2_34_1012_22.jpgl552lbcl2l	m 552 breast malignant	1	2	2	1
15	1 4 2 2 34 1012 21.jpg1541lbcl2l	m 541 tymph node maigr	1	2	1	2
16	1_4_3_2_34_1012_20.jpgl537lbcl2l	m 537 lymph node maigr	1	2	1	2
17	1_4_4_2_34_1012_19.jpgl242lbcl2l	m 242 spleen malignant	1	2	1	2
18	1_4_5_2_34_1012_18.jpg19741bcl21	m 974 lymph node mailgr	1	1	2	2
19	1 4 6 2 34 1012 17.jpgi224lbcl2l	mi224 lymph node maigr	1	2	2	2
20	1_4_7_2_34_1012_16.jpg16201bcl21	m 620 lymph node maigr	1	1	2	1
21	1_4_8_2_34_1012_15.ppgl540lbcl2l	m 540 lymph node maign	1	0	2	0
22	1_4_9_2_34_1012_14 jpgl466lbcl2l	m 466 lymph node maligr	1	1	1	1
23	1 4 10 2 34 1012 13.jpd/979/bd2	21/979 ent malignant lyn	1	2	1	-2
	5 H 4		1			
Rea	dv			01 3	NUM	No. of the local distance of the

For those of you familiar with the PCL (Pre-CLuster) format, you will recognize the formatting of the output.

• In Column A is the UID (Unique IDentifier) column, which contains the information passed on by TreeView to the Stainfinder program (for more information on this, please refer to the Stainfinder walkthrough).

- In Column B is the NAME column, which contains the information obtained from the lookup file. The information present is the same as Columns A-F in the lookup file, except with a pipe ("|") separating the different columns from that file. The unique case identifier, followed by the diagnostic information, appears in the field.
- In Column C is the GWEIGHT column, which defines the absolute weight each case is given in the clustering. The default value for each case is 1, indicating that each cases given equal weight in the hierarchical clustering. You may alter these values to some other number, prior to clustering.
- Columns D and onward: each column represents the scoring data obtained from a slice of your TMA. The name of the antibody, as specified in your original raw scoring workbook, used to stain that slice, appears at the top row of that column.
- In Row 2 is the EWEIGHT column, which defines the absolute weight each slice is given in the clustering. the default value for each slice is 1, indicating that each slice is given equal weight in the hierarchical clustering. You may also alter these values to some other number, prior to clustering.

If you had chosen to output in the K-M format, you will get the following instead:

	5 C 2 8	BB J D.C.	x)	6 41 21 10	100%	- 3 *	Arial		
A1		= s_a_c_r	10.00	2000 C 100		(a) (a)	1		
A	12	8	ç	D	E	E	6	н	11 3
1 5 8 0	r Scan P	ilename for 1st Ab P	P#	bcl2	mib1	mum1-yn-	mum1-yn-	Descript	ion
2 1.4.1	1 1 4 1	1_34_1012_1.jpg	164	1	1	- 1	1	164 mu	iscle n
3 1_4_2	1 1 4 2	1_24_1012_2.jpg	619					819 mu	usole n
4 1_4_3	1 1 4 3	1_34_1012_3.jpg	115	2	2	2	2	115 lyn	nph nod
5 1_4_4	1 1_4_4	1_34_1012_4.jpg	116		2	2		116 lyn	hph nod
6 1_4_5	1 1 4 5	1_34_1012_5.pg	168	3	3	2	2	168 lyn	nph nod
7 148	1 1 4 6	1_34_1012_6.pg	126	3	3	2	2	126 lyn	nph ned
8 1_4_7	1 1_4_7	1_34_1012_7.jpg	976	2	2	0		976 spl	een nee
9 1_4_8	1 1_4_8	1_34_1012_8.jpg	258	3	2	2	2	258 ski	ism in
10 1_4_9	1 1 4 9	1_34_1012_9.jpg	260	2	2	2	2	260 ski	n mai
11 1 4 10	1 1 4 10) 1 34 1012 10jp	106					106 bre	m tese
12 1 4 1	1 1 4 11	1_1_34_1012_11 jp	- 95	- 2				95 brea	ast ma
13 1_4_1	2 1 4 1	2 34 1012 22.jpg	552	3	3	2	2	552 bre	ast m
14 1_4_2	2 1 4 2	2_34_1012_21jpg	541	3	2	3	3	541 lyn	nph nod
15 1 4 3	2 1 4 3	2 34 1012 20.jpc	.537	3	2	3	3	537 lyn	aph ned
16 1 4 4	2 1 4 4	2 34 1012 19.jpc	242	3	2	- 3	3	242 spi	een m
17 1.4.5	2 1.4.5	2_34_1012_18.jpc	974		3	3	3	974 lyn	nph ned
18 1_4_6	2 1_4_6	2_34_1012_17 jpc	224	3	3	3	3	224 lyn	nph nod
19 1 4 7	2 1 4 7	2 34 1012 16.jpc	620	2	3	2	2	620 lyn	nph nod
20 1 4 8	2 1 4 8	2_34_1012_15.jpg	540		3			540 lyn	nph ned
21 1 4 9	2 1 4 9	2_34_1012_14.jpg	466	2	2	2	2	466 lyn	nph ned
22 1_4_10		2_34_1012_13.jp	979	3	2	0	0	979 en	[maig
23 1_4_1	1_2 1_4_11	2 34 1012 12 jp	535		0			535 lyn	aph ned
	4-KM/				1			1.5	
Ready				30		10 01	NUM	11 3 214	

- Column A provides information on the physical location of the spot within the TMA in the following format, <u>s a c r</u>, where:
 - s = sector number
 - a = array number
 - c = column number
 - r = row number
- Column B provides information on the corresponding digital image filename for a particular spot. The nomenclature of this filename uses the numeric coding system used is based on the Bliss microscope system Bacus Laboratories Inc., consisting of seven numbers separated by underscores. This is covered in the Stainfinder walkthrough.

- Column C consists of the unique case identifier. It is labeled as "FP#" because the lookup files were generated from a FileMaker Pro database in the van de Rijn laboratory.
- Columns D-G (in this example; TMAs with a larger number of slices will occupy more columns in this range) contain the unmodified score data of the TMA.
- Column H (in this example; in other datasets, it will be the rightmost column in the file) contains the description for that spot and is formatted in the same way as the NAME column in the PCL output file.

You are now ready to proceed with hierarchical clustering or any other sort of statistical analysis you wish to perform on your TMA data.

Clustering deconvoluted data, prior to viewing in Treeview

Open the Cluster program. If you don't have it, download it from <u>http://rana.lbl.gov/EisenSoftware.htm</u>. You may pre-filter the data if you wish; otherwise, proceed to clustering by clicking on the "Hierarchical Clustering" tab. You should see the following screen below:

Gene Cluster - Check for	update at h	http://rana.stanford.edu/softw 🔳 🗖 ک		
Input Load File File Format Help	File Loaded	J.\Research\Data Proc\For Matt\tissue arrays\Paper\5.txt		
	Job Name	5		
Read Monual	Datasethas	270 Rows 4 Columns Sove		
Filter Data Adjust Data Hierorchicol	Clustering K M	eans Clustering Self Organizing Maps PCA		
	Hierarchically	Cluster Axes		
Genes	1 ²	Artoys		
☑ Cluster		I Cluster		
Calculate Weights		Calculate Weights		
Similarity Metric		Similarity Metric		
Correlation (uncentered)	•	Correlation (uncentered)		
Average Linkage Clustering	Complete Linka	ge Clustering Single Linkage Clustering		
ne Loading Data				

The default parameters for clustering are shown in the screenshot above. If you wish, you may modify these parameters or other parameters available in the Cluster program. However, the demo files provided on this website have been clustered with these default parameters. Click on "Average Linkage Clustering". The resulting CDT, GTR, and ATR files will appear in your working directory and are ready for viewing under TreeView. If you wish to find out more about the various clustering methods and other features of this program, please refer to the corresponding documentation for Cluster.

Open the TreeView program. If you don't have it, download it from <u>http://rana.lbl.gov/EisenSoftware.htm</u>.

Go to **File** \rightarrow **Open**, and open your newly clustered file (e.g. 4.cdt, in this example). You may adjust the thumbnail and zoom image pixel size (defined for each individual datapoint, represented by a single block of color) to your preferences. You will also need to adjust the contrast to 2 (representing a dynamic range of 2-fold induction or 2-fold repression in gene microarrays, for which TreeView was originally designed).

Thumbnail Imag	wsing Calors
X Pixel Size	5
Y Pixel Size	2
Zoom Image	
X Pixel Size	12
Ƴ Pixel Size	12
Contrast	
Image Contrast	2
Mask Vals K	0

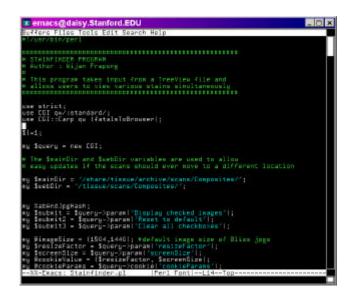
If you use the parameters indicated in the screenshot above, and using the demo file 4.cdt, you should get the following:

lle <u>S</u> etting Find	Internation 10.47064208984375	
Ę	Ъ	
aller -	Mutches 1961:2 1963:2 1964:4 1964:	
	<pre>sing = survey = real-sector = currises = success = survey = 2001 bread: multisest = currises = survey = survey = 2001 bread: multisest = currises = survey = survey = 2001 bread: multisest = currises = survey = survey = 2001 bread: multisest = currises = survey = survey = 2001 bread: multisest = currises = survey = survey = 2001 bread: multisest = currises = survey = survey = 2001 bread: multisest = currises = survey = 2011 bread: multisest = currises = surv</pre>	
	1955 Recent Mellenast Carcinoma dectal invasive 25 Broart mornal ancenal 4 b = 4	

You may recall that the scoring data is represented in the following manner:

Score	Description	Treeview score	Appearance under Treeview
	Missing datapoint		
0	Negative	-2	
1	equivocal/uninterpretable		
2	weak	1	
3	strong	2	

You may now browse your dataset for additional analysis. To use TreeView with Stainfinder, proceed to the Stainfinder walkthrough, which begins on the next page.

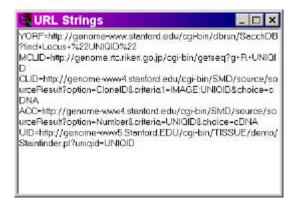

Stainfinder Walkthrough

Note: if this is your first time using this TMA data management system, it is recommended that you proceed to the Downloads section and download the Demo Suite files. The examples presented in this walkthrough employ those files, and you should obtain the same results in using these files and with the other necessary programs available elsewhere. It is also highly recommended that you first go through the TMA-Deconvoluter <u>walkthrough</u> if you haven't already done so.

What you will need for this walkthrough:

- Your digital image collection with files created or named in the Bliss filename nomenclature.
- A computer connected to your intranet or to the Internet that will serve as the web server for your digital image collection.
- A web server program that can support CGI.
- The PERL interpreter appropriate for your web server.
- The Stainfinder program.
- TreeView
- A clustered dataset
- A web browser capable of displaying images
- 1. Begin by setting up your web server. Proceed to the Appendix for instructions.
- 2. Deposit your TMA image files in your web server. Please refer to the Bliss file system **nomenclature** in the Appendix for proper file system structure and file names. Be sure that the entire collection resides inside the directory structure recognized by the web server.
- 3. Deposit your most updated lookup file into your web server, in the "Composites" directory of your TMA image file collection.
- 4. Configure Stainfinder.

Open the copy of the Stainfinder program stored on your web server with your favorite text editor. If you modify a copy stored elsewhere, be sure to upload it to your web server once you have completed your modifications. An example is shown below.


Modify lines 22 and 23 so that they point to the correct location of your files on your web server. The exact location will depend on your server configuration.

Save the changes and close the text editor.

Configuring TreeView

Open the TreeView program and load your clustered dataset. If you have not already done so, proceed to the <u>walkthrough</u> for generating a clustered dataset of your TMA data. Alternatively, you may download the demo clustered datasets from the Downloads section and use that instead.

Go to the Setting menu and select "Edit URL strings". A screen like the one shown below will pop up.

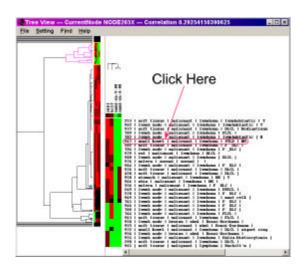
On a new line, enter the URL string corresponding to the address of the Stainfinder program on your web server, plus the parameters. The screenshot above indicates the correct URL string for the demonstration database on the Stanford Genome servers. For example, if the Stainfinder program was stored in the **cgi-bin** directory of your server, and your server address was www.myserver.edu, you would specify the following:

UID=http://www.myserver.edu/cgi-bin/Stainfinder.pl?uniqid=UNIQID

You will notice that TreeView is passing whatever is specified in the UID column to the variable UNIQID. For example, if your UID column contained the following:

1_4_1_1_34_1012_1.jpg!164!bcl2!mib1!mum1!mum1

then it will send the following URL to your default browser (as a single unbroken line):

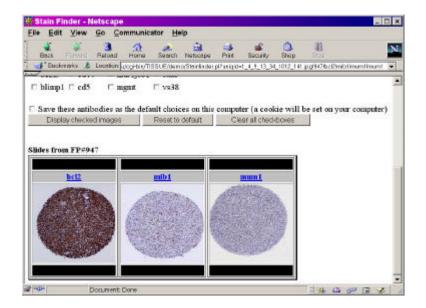

http://genome-www5.Stanford.EDU/cgi-bin/ TISSUE/demo/Stainfinder.pl?uniqid=1_4_1_1_34_1012_1.jpg! 164!bcl2!mib1!mum1!mum1

If you have configured Stainfinder and TreeView properly on your computer and on your web server, clicking on a TreeView link should bring up a screen similar to what you will get when you click on the link above.

Using Stainfinder with TreeView

If you have correctly configured your web server and Stainfinder, and if you have a clustered data sets prepared, then you are ready to start using Stainfinder with TreeView.

- 1. Open the TreeView program and load your clustered dataset. If you have not already done so, proceed to the walkthrough for generating a clustered dataset of your TMA data. Alternatively, you may download the demo clustered datasets from the Downloads section and use that instead.
- 2. You may now click on one of the descriptors (shown below) to view the corresponding spot images from your collection.



3. A new browser window will open, and you should get a screen like the one shown below (depending on how many antibodies stains you have available on your digital image collection for that particular core):

Bazk	Forvard Re	a di Home	Search	Netscape	Print	Security	Shop	all Stop	
#"Backn	ranka 🥻 Loc	ation wogithin/T	SSUE/dem	ofSteinfielder	pl?uniqid=t	4_9_13_34	1012_14	pg/947/bc/2mio1im	umtkoumt 💌
Display in	itial images	at 12.5% 💌	of their o	original si	ze				2
Monitor re	solution of	your compute	1280x1	024 💌					
Save the	ese settings	as the default	on this e	omputer (a cookie	will be a	et on ye	our computer)	
Show stain	s from the f	following anti	bodies:						
🗆 alkl	🗆 cd10	C cfos	₩ mib1						
□ bax	🗆 ed117	🗆 ejun	🛛 muml						
🗆 hel1	🗆 cd138	E exer3	□ p27						
F bel2	🗆 cd20	□ fkbp12	□ rb						
□ bcl2b	□ cd21if8	□ he	E #0014	-					
🗆 bel6	T cd3	🗆 jsb1	E #0021	60					
□ bebd	□ cd30	🗆 mell	E s0024	10					
□ bebs	🗆 ed44	□ mdr1jeb1	E stat3						
🗆 blimpt	□ cd5	🗂 mgant	∏ vs38						
C Save the	ese antibodi	ies as the defa	alt choic	es an this	compute	r (a cook	ie will	be set on your c	omutec) -
	w checked in	the second second second second	Reset to	and the second se	and the second second second	r all check		1	

Here, the default settings will be selected. The thumbnail images will be shown in the same browser window, and you can select a percentage value of the original image size for those thumbnails. You should also select the correct maximum resolution for your monitor, since Stainfinder will size the browser window of zoomed images (more on this in the next step). You will notice that Stainfinder will provide a list of all available antibodies for that particular core sample, with the relevant antibodies preselected, based on your data set being viewed in TreeView. You may alter your selections as desired. In addition, if you wish to retain your altered selections, choose your appropriate options, and a cookie will be set on your computer.


4. Click on "Display checked images". You should get a screen like the one shown below (depending on your selection of antibodies):

You will notice that the images retrieved correspond to either the antibodies present in your datasets, or your own selections. This is a helpful feature for comparing the scores shown in your dataset under TreeView with the actual stain images.

Note: you may have to scroll down to see your images. In addition, if an antibody appears more than once in your data set (as shown earlier in this TreeView example), it will be displayed only once with Stainfinder.

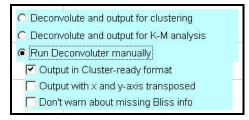
5. You may now click on the link corresponding to one of the images. This will bring up the browser window containing the full-size image, allowing you to browse the image in full detail:

You are now ready to use Stainfinder with TreeView to verify scores, compare stains, or perform any other function that would assist you in exploration of your digital image collection and corresponding data analysis.

An on-line demonstration of a clustered dataset with Stainfinder is available at <u>http://genome-www.stanford.edu/TMA/explore.shtml</u>.

Additional Features of the TMA-Deconvoluter

Note: manual operation is recommended only for users who are familiar with the TMA-Deconvoluter.


While automatic operation of the TMA Deconvoluter for this system is sufficient for many users, it is possible to run the TMA Deconvoluter manually for increased flexibility. When automatic operation is selected (by choosing one of the two output options and then clicking "Run Deconvoluter", the following is performed:

- 1. The raw scoring workbooks are deconvoluted and outputted to a new worksheet in the TMA Deconvoluter, based on the output option selected.
- 2. The scores in each output worksheet is converted to new scores, based on the output option.
- 3. Each worksheet is output to a text file and saved.

Manual operation entails running each of these steps separately, and the user may choose not to run all of these steps. This added flexibility is helpful – for example, the user may choose to:

- keep the scores unchanged, skipping step 2
- not output any files, skipping step 3
- perform other data manipulations following deconvolution in step 1 prior to outputting to files.

To perform manual operations, select the "Run deconvoluter manually" option, as shown below:

In this state, the Deconvoluter will, by default, output in a format ready for K-M (or other) analysis. To output in cluster-ready format, check the corresponding option, as shown above. You will notice that this checkbox option is now enabled while the Deconvoluter is in manual mode.

Proceed as you would for normal operation in running the Deconvoluter. You will notice, however, that clicking on "Run Deconvoluter" will run only the Deconvolution step. To execute the other steps, click on one of the manual operation buttons, as shown below:

ion:
res
e
s

- **Convert Score** Using the Score Conversion Utility, the scores are converted based on user settings. This process can be performed iteratively if the user has more than 4 different score types to convert, the use can specify the first four scores, click "Convert Scores", and repeat the process until all scores have been converted. *Note: the TMA-Deconvoluter will not check whether or not the specified scores exist in the dataset prior to performing the conversion and may return an error if such scores do not exist.*
- **Transpose** transpose the data by swapping the x and y-axis. Note: Because fo Excel's 256-column limit, it is highly inadvisable to perform transposition on a data set that contains more than 250 cases.
- **Output files** output the data from the output worksheets in the TMA-Deconvoluter to text tab-delimited files.

These operations can be performed in any order (after deconvolution), but the user should know what (s)he is doing to the data.

<u>Appendix</u>

Raw Scoring Worksheet Format

5	2		Mig. 1	De	a .1	-			r A1	21 40	7	EQ.	100	Ø. A	rial			101	10	110	7.11			3.1	8
	L2	2022	× 4			11	SAMP.	10 A	2.	A+ 1		5.76	2013	* • I *	nai			. 1011	10	11.0	1 2	- 1-			•
1	4	в	E	D	E	F	6	н		J	K	L	M	N	0	P	0	E	5	т	U	V	W	X	Y
t	B3		-		-	1	~				10		10	- 10	-	1	*					-			
ľ	pector 1	1	2	3	4	5	6	7	B	9	10	11	100	andor 2	1	2	3	4	9	6	7	B	9	10	11
ľ	1	TE-4	619	1E	TIE	163	126	976	258	260	106	95	22	1	550	928	929	964	536	936	477	517	792	402	938
ľ	2	552	541	537	242	974	224	6,20	540	466	979	535		2	441	473	367	420	939	533	531	528	990	382	465
ľ	. 3	546	551	545	544	547	542	320	334	330	327	313	-	3	303	300	299	298	290	295	250	239	238	621	525
ľ	-4	742	788	944	583	968	734	318	251	298	296	323			335	319	369	395	937	484	723	965	972	532	538
[5	790	745	556	794	787	571	582	569	737	793	741	1	5	570	751	735	749	732	578	.294	248	246	35	932
ľ	6	785	554	579	576	941	736	731	747	796	739	942		B	784	750	943	744	748	557	786	733	791	743	740
Ī	7	746	730	789	681	585	583	940	574	566	597	t29			152	195	810	623	617	539	933	958	204	261	269
ľ	8	225	156	144	738	960	935	322	237	240	249	252		B	254	292	301	308	309	311	3t2	324	342	343	359
[9	274	276	284	337	345	344	340	339	336	328	314		9	310	307	305	297	299	245	241	444	124	752	755
ĺ	10	38.0	304	367	363	354	228	127	754	\$39	7B1	338		10	772	266	259	236	247	316	317	779	765	326	769
ľ	11	539	973	775	776	778	346	779	378	571	539	968		1	782	295	562	646	767	931	331	256	253	124	771
ľ	12	783	780	729	302	647	539	243	244	777	773	768		12	124	753	291	700	652	970	969	333	967	975	774
ĺ	13	347	963	341	530	961	321	946	945	- 947	350	952		13	951	.956	955	958	\$49	948	534	325	233	N 9-9-3	
															See. 1		1		11.0.00						
			-			-	_	-	-	-									-					_	
			-			1		_	-	-					-		-				_			_	
					-				-	-	_				-									-	
						-					-							_			-			-	
	_		-						-	-						-	-		-			_	-	-	_
				enteger		1.00	errey R		1		vbodin	-			beriets	8	-		-		-			-	
	0	arak oce	al'uninten			6016	ev memer	lymphe	ma		ss code	1.5			to read	1	-						-	-	
				positive			डॉटस	-	-		eelment.				eadby:		-		-				-		-
			stong	positive	1	-	ofher.	-	-		dilution			COF	amenta		-	-	-		-			-	-
		mest	er /bd	2/ mt	1/10	ne ant 1-4	n-4-00	/ m	m 1-5m	-5-00	1												4		1.

Master worksheet screenshot

- The first worksheet in the workbook should be a master worksheet that defines the layout of the sectors that comprise the tissue microarray. We routinely divide our tissue microarrays in sectors that are separated on the physical microarray by a space. We find it easier to read our tissue arrays if the maximum number of columns on an array sector does not exceed 12-14 columns. In addition we find that scanning images with the Bliss system in four sectors of, say 125, cores is easier than scanning all 500 images on an array in a single run. The drawback of course is that each sector needs to be set up for scanning separately on the Bliss system and that each sector requires its own folder of jpeg files. Should you decide to have all your sectors combined in one, the notation as below should still be maintained but of course you would avoid naming sectors 2, 3 and 4. A screenshot of the master worksheet appears above. The name of this worksheet should be "master" and should be identical in layout to all other worksheets that exist in this workbook.
- Cell "A1" (the top left cell in the worksheet) should contain the cell address, in R1C1 format of sector one, row one, column one. In the vast majority of cases, this will be "B3".
- The addresses for any additional sectors should be similarly defined for all other sectors in the TMA, and they should be specified in the cells directly to the right of cell A1 (i.e.

they should all be located in Row 1 of the worksheet). In addition, the number of total cells containing these addresses will be used to determine the total number of sectors that exist in your tissue microarray.

- Each sector should have a header column and a header row that defines the total number of rows and columns for that sector. The TMA-Deconvoluter explicitly uses the sector headers in the master worksheet in order to determine the sector dimensions. The sector name (e.g. "Sector 1") should be located in the cell where the header column and row meet. This cell should not be empty.
- There must be at least one row and column of separation between sectors. If there is no separation, the dimensions of that sector may be incorrectly detected by the TMA-Deconvoluter. Following this formatting convention, it is possible to have four or more sectors in your TMA.
- For the master worksheet, the data region of the sectors should contain the case identifiers that provide the key to the lookup file containing additional information. The identifiers do not have to be arranged in order, and if there is an empty cell, the corresponding case will not be present in the output file, regardless of whether or not scores exist in the subsequent data worksheets.
- Below the sector layout, additional information of the TMA can be provided. Please refer to the screenshot for an example. Currently, the following are required for compatibility with Stainfinder; the cells containing the information must be positioned at the indicated addresses below:

Cell Address	Description
H25	array #
H26	array name
H27	slice #
L25	antibody ^{*,+}
L26	bliss code ⁺

- * Note: this is what Stainfinder uses to identify antibodies. It should not have any punctuation characters, and should be identical to name of antibody in the name of the folder in which the images are stored. Take a look at the Bliss filename nomenclature to see how the file system is organized.
- ⁺ Note: if this information is missing, TMA-Deconvoluter will warn the user. This information is necessary for proper operation with Stainfinder.

Note that this must also be identical to the rest of the worksheets in the workbook.

-				v Inse													- 1	P X
	📽 🖬	30	2	¥ 10	B 7	0-	9 1	4 X	K 24	31 10	759	6 -	- 3	"Ar	ial			-
	A			•	-	B3												
-	A	8	0	0	E	F	G	H		4	K	4	M	N	0	P	.9	1
2	and the later of t	1	1	1.1	4	5	6	1	8	9	10	11		sector 2	1	2	11	1
	180.04			1	3	3	3	2	3	2	1	2	-	sector 2	1	2	1	-
		1 1	1	1	3	2	3	2	1	2	3	1	-	2	3	1		
		1 1		1	2	3	3	2	3	1	1	2	-	3	3	3	2	-1
8	- 4		1	1	3	3	1	2	3	+ ÷	3	2	-	4	2	3	1	-
8	. 6		3	1	3	1	3	3	3	$\pm \dot{\tau}$	1	1	-	5	3	3	1	+
	6		1	3	3	3	3	1	3	3	2	3	-	6	z	1	17	
	1	1 1	1	1	3	3	3	3	3	1	3	3		7	3	3	1	+
10	9	1	1	3	1	2	2	2	2	2	2	2		9	2	2	1	
1	2	1	1	3	2	2	2	2	2	2	2	2	-	9	2	3	1	
2	N.	3	2	2	. 2	3	3	3	3	1	3	3		10	3	3	3	
3	T	t :	1	1	3	3	3	1	3	3	1	2		11	3	3	2	1 3
1	12	1	1	2	3	1	1	2	3	2	1	3		12	1	3	2	
3	t3	+	2	2	3	0	2	3	2	3	3	1		13	Ũ	0	1	1
			2		1		1.1		1.1		2.10		1 - 10			(1	
7																		
3																		
0			_	_		-	-		-	_		_					-	
1			-	-	-	-	-		-	-							-	
2			-	-	-	-	-	-	-	-		-				-	-	-
2			-	-	-	-	-	-	-	-	-	-					-	-
+		-	-	1.00		-	1.00.0	14	-	-	10.1	1.10		1.15		191400	-	
5		1000		negative			anay‡		1		rationaly are code					141000	-	-
7		89.840		terpretable al. pepting			nep meme alice		T						ne react		-	-
0				e pestre gestre		-	ater.	34.			o akment	11000				1410	-	-
9			2418	d baaaw	6.9		01.0	-			CHURT I	11000		COPY	erendo.	-		
6			-		-	-	-		-	-							-	
	12.12.1	a and	100	do/m	200			1	-	- P. O.S.	/	-				14	1000	H

Scoring worksheet screenshot

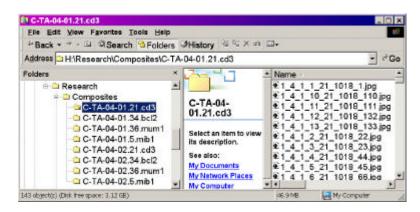
• A scoring worksheet will contain the scoring information of an antibody stain on a slice of the TMA. The name of the worksheet should match the name given in cell L25; the value in cell L25 will be used as the name of the antibody in the output file. Within each sector, scoring data is provided. There is a limit of 253 scoring worksheets per workbook – this corresponds to the 256-column limitation in Microsoft Excel and the three columns required for the format of the pre-cluster file for the Cluster program.

Lookup File Format

D S I I I I I I I I I I I I I I I I I I	J
1 no ergan class diagnisis modifier 1 modifier 2 modifier 3 2 1 breast malignant carcinoma ductal invasive grade 1 3 2 breast malignant carcinoma ductal invasive grade 1 4 3 breast malignant carcinoma ductal invasive grade 3 5 4 breast malignant carcinoma ductal invasive grade 3 6 5 breast malignant carcinoma ductal invasive grade 3 7 6 breast malignant carcinoma ductal invasive grade 3 8 7 breast malignant carcinoma ductal invasive grade 3 9 6 breast malignant carcinoma ductal invasive grade 3 10 9 breast malignant carcinoma ductal invasive grade 3 11 10 breast malign	J
2 1 breast malignant carcinoma ductal invasive grade 1 3 2 breast malignant carcinoma ductal invasive grade 3 4 3 breast malignant carcinoma ductal invasive grade 3 5 4 breast malignant carcinoma ductal invasive grade 3 6 5 breast malignant carcinoma ductal invasive grade 3 7 6 breast malignant carcinoma ductal invasive grade 3 8 7 breast malignant carcinoma ductal invasive grade 3 9 8 breast malignant carcinoma ductal invasive grade 3 9 8 breast malignant carcinoma ductal invasive grade 3 10 9 breast berign fbroadenome invasive grade 3 11 10 breast malignant carcinoma ductal invasive grade 3 12 11 breast malignant carcinoma ductal invasive grade 3 13 12 breast normal<	
3 2 breast malignant carcinoma ductal invasive grade 3 4 3 breast malignant carcinoma ductal invasive grade 1 5 4 breast malignant carcinoma ductal invasive grade 3 6 5 breast malignant carcinoma ductal invasive grade 3 7 6 breast malignant carcinoma ductal invasive grade 3 8 7 breast malignant carcinoma ductal invasive grade 3 9 8 breast malignant carcinoma ductal invasive grade 3 10 9 breast berign fibroadenome 1 11 10 breast malignant carcinoma ductal invasive grade 3 12 11 breast malignant carcinoma ductal invasive grade 3 13 12 breast normal normal invasive grade 3 15 14 breast normal normal invasive grade 2 16 15 breast malignant carcinoma ductal i	
4 3 breast malignant carcinoma/ductat invasive grade 1 5 4 breast malignant carcinoma/ductat in stu grade 3 6 5 breast malignant carcinoma/ductat in stu grade 3 7 6 breast malignant carcinoma/ductat in vasive grade 3 8 7 breast malignant carcinoma/ductat in vasive grade 3 8 7 breast malignant carcinoma/ductat in vasive grade 3 9 breast malignant carcinoma/ductat invasive grade 3 10 9 breast berign fibroadenoma invasive grade 1 11 10 breast malignant carcinoma/ductat invasive grade 3 12 11 breast malignant carcinoma/ductat invasive grade 3 13 12 breast malignant carcinoma/ductat invasive grade 3 14 13 breast normal normal invasive grade 2 16 15 breast malignant	
5 4 breast malignant carcinoma ductal in stu grade 3 6 5 breast malignant carcinoma ductal invasive grade 3 7 6 breast malignant carcinoma ductal invasive grade 3 8 7 breast malignant carcinoma ductal invasive grade 3 8 7 breast malignant carcinoma ductal invasive grade 3 9 8 breast malignant carcinoma ductal invasive grade 3 10 9 breast benign fibroadenoma grade 3 11 10 breast malignant carcinoma ductal invasive grade 3 12 11 breast malignant carcinoma ductal invasive grade 3 13 12 breast mormal normal instu grade 3 14 13 breast normal normal invasive grade 3 15 14 breast malignant carcinoma lobular invasive grade 2 17 16 breast malignant carcinoma duc	
8 5 breast malignant carcinoma ductal invasive grade 3 7 6 breast malignant carcinoma ductal invasive grade 3 8 7 breast malignant carcinoma ductal in stu grade 3 9 8 breast malignant carcinoma ductal in stu grade 3 10 9 breast berign fibroadenoma grade 1 11 10 breast malignant carcinoma ductal invasive grade 1 12 11 breast malignant carcinoma ductal invasive grade 3 13 12 breast malignant carcinoma ductal invasive grade 3 14 13 breast normal normal invasive grade 3 15 14 breast normal normal invasive grade 2 17 16 breast malignant carcinoma ductal invasive grade 2 16 17 breast malignant carcinoma ductal invasive grade 2 18 18 breast normal normal invasi	_
7 6 breast malignant carcinoma ductal invasive grade 3 8 7 breast malignant carcinoma ductal in situ grade 3 9 8 breast malignant carcinoma ductal in situ grade 3 10 9 breast berign fibroadenoma invasive grade 1 11 10 breast malignant carcinoma ductal invasive grade 1 12 11 breast malignant carcinoma ductal invasive grade 3 13 12 breast malignant carcinoma ductal invasive grade 3 13 12 breast normal carcinoma ductal in situ grade 3 14 13 breast normal normal invasive grade 3 15 14 breast normal normal invasive grade 2 16 15 breast malignant carcinoma ductal invasive grade 2 16 17 breast malignant carcinoma ductal invasive grade 2 18 16 breast normal norm	
8 7 breast malgrant carcinomaductal in stu grade 3 9 8 breast malgrant carcinomaductal investive grade 3 10 9 breast berign fibroadenoma investive grade 3 11 10 breast malgrant carcinomaductal investive grade 1 12 11 breast malgrant carcinomaductal investive grade 3 12 11 breast malgrant carcinomaductal investive grade 3 13 12 breast normal normal grade 3	
8 breast melignant carcinoma ductat investive grade 3 10 9 breast berign fibroadenoma grade 3 11 10 breast melignant carcinoma ductat investive grade 1 12 11 breast melignant carcinoma ductat investive grade 1 12 11 breast melignant carcinoma ductat investive grade 3 13 12 breast melignant carcinoma ductat in stu grade 3 14 13 breast normal normal ormal grade 3 15 14 breast normal normal grade 3 16 15 breast melignant carcinoma ductat investive grade 2 17 16 breast melignant carcinoma ductat investive grade 2 18 16 breast normal normal investive grade 2 19 16 breast normal normal investive grade 2 </td <td></td>	
10 9 breast benign fibroadenoma 11 10 breast malignant carcinoma ductal invasive grade 1 12 11 breast malignant carcinoma ductal invasive grade 3 13 12 breast malignant carcinoma ductal in stu grade 3 13 12 breast normal normal in stu grade 3 14 13 breast normal normal invasive 15 14 breast normal normal invasive 16 15 breast malignant carcinoma ductal invasive 17 16 breast malignant carcinoma ductal invasive 18 17 breast malignant carcinoma ductal invasive 18 16 breast malignant carcinoma ductal invasive 19 16 breast normal normal invasive	
11 10 breast malignant carcinoma/ductal invasive grade 1 12 11 breast malignant carcinoma/lobular invasive grade 3 13 12 breast malignant carcinoma/lobular invasive grade 3 13 12 breast normal normal in stu grade 3 14 13 breast normal normal 15 14 breast normal normal 16 15 breast malignant carcinoma/lobular invasive 17 16 breast malignant carcinoma/ductal invasive 17 16 breast malignant carcinoma/ductal invasive 18 17 breast malignant carcinoma/ductal invasive 19 16 breast normal normal	
12 11 breast malignant carcinomalobular invasive 13 12 breast malignant carcinomaductal in situ grade 3 14 13 breast normal normal in situ grade 3 15 14 breast normal normal in waiye 16 15 breast malignant carcinomalobular invasive 17 16 breast malignant carcinoma ductal invasive 16 17 breast malignant carcinoma ductal invasive 16 17 breast malignant carcinoma ductal invasive 19 18 breast normal normal	
13 12 breast malignant carcinoma ductal in stu grade 3 14 13 breast normal normal 15 14 breast normal normal 16 15 breast malignant carcinomalobular 17 16 breast malignant carcinoma ductal 18 17 breast malignant carcinoma ductal 18 17 breast malignant carcinoma ductal 19 18 breast normal normal	
14 13 breast normal normal 15 14 breast normal normal 16 15 breast malignant carcinomalobular 17 16 breast malignant carcinoma ductal 18 17 breast malignant carcinoma ductal 18 17 breast malignant carcinoma ductal 18 17 breast malignant carcinoma ductal 19 16 breast normal normal	
15 14 breast normal normal 16 15 breast malignant carcinomalobular invasive 17 16 breast malignant carcinomalobular invasive 18 17 breast malignant carcinomalobular invasive 18 17 breast malignant carcinomalobular invasive 19 16 breast normal normal	
16 15 breast malignant carcinomalobular invesive 17 16 breast malignant carcinomaductal invesive grade 2 18 17 breast malignant carcinomaductal invesive grade 2 18 17 breast malignant carcinomaductal invesive grade 2 19 16 breast normal normal	
17 16 breast malignant carcinoma/ductal invasive grade 2 18 17 breast malignant carcinoma/ductal invasive grade 2 19 16 breast normal normal	
16 17 breast malignant carcinoma ductal invasive grade 2 19 16 breast normal normal	
19 18 breast normal normal	
20 19 breast benign papilloma	
21 20 breast benign fibroadenoma	_
22 21 breast malignant carcinoma ductal invasive grade 2	
23 22 breast malignant carcinomaliobular invasive	

Lookup file screenshot

- The lookup table should contain a header at Row 1.
- Unique case numbers should be located in column A.
- Columns B-F can contain additional information and will be included in the NAME column of the output file (which will correspond to the descriptors under Treeview). These descriptors can be diagnostic features (tumor grade, etc., as in this example) but can also contain clinical data such as follow-ups, etc.
- A pipe ("|") will appear between the information contained within each column, in the output file.
- Any additional information beyond Columns A-F will not be included in the output file.


Note: the case identifier must begin with the integer 1, and there should be no skipping in the numbering. Thus, for any given case number n, it should appear on row n + 1.

Please refer to the screenshot for an example of the layout.

Bliss File Name Nomenclature

The TMA data management system described here was designed with the Bliss filename nomenclature in mind. If you created and curate your digital image collection with the Bliss microscope system, your files will already be in this format. If you have not, the following will describe how the nomenclature is structured so that you can adapt your system appropriately.

Images generated by the Bliss microscope system (Bacus Labs Inc.) are stored in the following directory structure:

All TMA directories should be contained in the directory "Composites", as shown above. Each directory or folder represents a collection of images from a single sector of a given slice of the TMA, as shown above. The total number of folders in the selection will equal the product of the number of arrays, slices, and sectors in your TMA collection. In the example above, which also represents the files stored in the on-line demonstration database, there are 8 folders, representing an array composed of 4 slices and 2 sectors each.

The directory name is composed of the following:

C-TA-0x-0y.z.Ab-Name

An example of this would be the following:

```
C-TA-04-02.34.bcl2
```

where:

Variable	Description	Example
x	TMA Array Number	4
У	TMA Sector	2
z	TMA Slice Number	34
Ab-Name	Antibody Name	bcl2

So, in the above example, the folder/directory represents images collected from TMA number 4, sector 2, slice 34, stained with the antibody against bcl2.

Each of the image filenames in these directories consist of the following:

s_a_c_r_sl_code_d.jpg

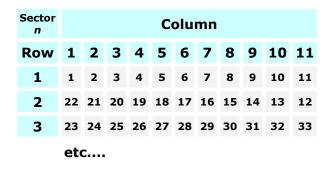
An example of this would be the following:

1_4_1_1_34_1012_1.jpg

where:

Variable	Description	Example
s	Sector Number	1
a	Array Number	4
с	Column Number	1
r	Row Number	1
sl	Slice Number*	34
code	Bliss Code Number*	1012
d	Order Number	1

* Note that the raw scoring workbooks used to generate the TMA TreeView files must contain the necessary information in order for Stainfinder to recognize the filenames. This is why the TMA Deconvoluter will warn the user if "Bliss or slice information" is missing from their scoring worksheets.


So, in the above example, the folder/directory represents image collected from Sector 1, Array 4, Column 1, Row 1, Slice 34, Bliss Code designation 1012, and is the first picture scanned in the array.

A note about the Bliss code numbers: The BLISS code number is a numerical code for the name of the antibody used in staining and is required since the name of a JPG image file generated by the Bliss system consists of 7 numbers separated by underscores, but does not allow for letters.

Your digital image collection must follow this nomenclature in order for Stainfinder to work properly. If there are missing or incorrect information, Stainfinder may not be able to retrieve the image file or may retrieve incorrect image files. Please examine the on-line demonstration database and accompanying files from the Downloads section to see how a properly configured system should behave.

Note: The Bliss microscope system employs a serpentine scanning method in generating the order of pictures collected. The Order Numbers reflect this scanning method. An example of a serpentine scan is shown below, where the numbers represent the order in which the images are acquired.

Serpentine Scan

Scanning beings at Row 1, Column 1 of Sector n and proceeds to the end of the row. It then moves one row down and proceeds to the left, until it reaches the left end of the row. It continues onto the third row and proceeds in like fashion until the end of the sector is reached.

Web Server Setup Instructions

Preface and Disclaimer

Note: Installation packages for web servers are available that run smoothly on the majority of computer configurations. However, setting up a web server is not a trivial task, and should not be handled by a novice without guidance. Please realize that you are exposing a portion of your computer to anybody who has access to the internet. Security is a complicated matter that people make careers out of, and security holes are periodically discovered in even the best web servers. Plan on checking regularly for updates and/or security fixes. With this in mind, these instructions are provided as a quick reference only. Non-technical users are advised to consult a systems administrator for assistance. We are not responsible for any damage, loss, nor compromise of information caused by an improperly configured server.

Instructions are provided here for installing the Apache web server on a Windows-based computer with the basic default settings. Apache is free, open source, and runs on multiple platforms – which helps explain why it is currently the most popular web server on the Internet today. While Apache can be run on Windows 95, 98, or ME, these are operating systems intended for the home user and not a production environment, so these operating systems are not officially supported by Apache. Furthermore, at the time of this writing, there may be a possible bug that affects Windows XP. Hence, it is highly suggested that Apache be run on either Windows NT or Windows 2000. The documentation for Apache (<u>http://httpd.apache.org</u>) is extensive and far more detailed that what you will find here.

Prepare your computer (server) for installation

Go to Windows Update (<u>http://windowsupdate.microsoft.com</u>) and install any security fixes. Security fixes are found in the Critical Updates section.

A server ideally should not be used to run any more applications outside of its main function. Ports likewise should be closed if they are not required for an application. The Apache web server, as most web servers do, is accessed through port 80. If this makes no sense to you, please seek further assistance with your setup.

Download the installation package from the Apache web site

There are currently two versions of Apache in development – Apache 1.3 and 2.0. We currently suggest using version 2.0 as it is better optimized for use on Windows machines. The easiest installation packages for the Windows platform can be found at the Apache Windows Distribution page:

http://www.apache.org/dist/httpd/binaries/win32/

You should read the release notes on this page carefully for any notices or known problems. These packages are provided in the MSI format. For our purposes, the package we will use is called "apache_2.0.35-win32-x86-no_ssl.msi". The name of the package will obviously change as new releases appear.

If you are using Windows 2000, XP, or ME, you simply need to open file you just downloaded. If you are using Windows 95/98/NT, try opening the package, but if it does not run, then you need to download the Windows Installer program in order to use the MSI packages (scroll to the bottom of the Apache Windows Distribution page for details and links to the Windows Installer).

Install Apache

Follow the instructions provided by the installer. When asked for the server name and domain name, enter the information as provided by your systems administrator. Alternatively. if you do not have this information, but you have a static IP address, you can enter the IP address instead. Apache is best run as a service, meaning that it runs whenever the computer is started. After installation, there are many useful shortcuts at Start Menu-> Programs->Apache HTTP Server, including links to start and stop the Apache Web Server. You may also see an icon representing the Apache Web Server in the system tray of your computer (lower right hand corner).

If installation was successful, a test page will appear when you type in the address of your computer into your web browser.

Configure Apache

Apache's options are controlled by one main text file entitled httpd.conf. If you accepted the default settings, this file is located in the "C:/Program Files/Apache Group/Apache2/conf/" directory. There is also a shortcut to this file found at: Start Menu \rightarrow Programs \rightarrow Apache HTTP Server \rightarrow Configure Apache Server \rightarrow Edit the Apache httpd.conf Configuration File.

For our purposes, we are mainly concerned with the location of your files. Limiting access to these files is beyond the scope of this walkthrough, and the Apache documentation should be closely read if you need to do so.

Open the httpd.conf file in your favorite text editor. Lines that begin with the # sign are informational only. Scroll down through the file until you see a section that reads:

DocumentRoot: The directory out of which you will serve your # documents. By default, all requests are taken from this directory, but # symbolic links and aliases may be used to point to other locations. # DocumentRoot "C:/Program Files/Apache Group/Apache2/htdocs"

The main pages of your web site should be located in the Document Root. You can move the Document Root by simply changing the location specified in the httpd.conf file.

If you continue to scroll down the httpd.conf file, you will see the below section:

```
# ScriptAlias: This controls which directories contain server scripts.
```

[#] ScriptAliases are essentially the same as Aliases, except that

[#] documents in the realname directory are treated as applications and

```
# run by the server when requested rather than as documents sent to the client.
# The same rules about trailing "/" apply to ScriptAlias directives as to
# Alias.
#
ScriptAlias /cgi-bin/ "C:/Program Files/Apache Group/Apache2/cgi-bin/"
```

Files in directories specified in this section are executed rather than simply displayed. You can specify multiple directories by simply adding another ScriptAlias line to the httpd.conf file. The Stainfinder Perl script should be placed in one of these directories.

<u>Install Perl</u>

Perl is a programming language commonly used by CGI programs. Because Stainfinder is written in this language, you must install Perl on your server in order to run Stainfinder successfully.

Perl for Windows install packages in MSI format are available from ActiveState (<u>http://www.activestate.com</u>). The current version at the time of this writing is ActivePerl 5.6.1 build 631. Running the installer file will walk you through the Perl installation. The default settings should be sufficient.

Install Stainfinder

Copy Stainfinder (the file Stainfinder.pl) to a directory recognized by your web server. Your web server will have a "root" directory whose location is defined by the configuration of your server, and anything placed outside the "root" directory will normally not be recognized by the server.

Configure Stainfinder to your installation

The sample Stainfinder program, written in Perl, was taken from a Unix system. The opening line of the file tells the program where Perl is located on the system, and must be changed to accommodate differences in the Windows system. On a Windows system, the first line should be changed from:

```
#!/usr/bin/perl
```

to:

#!c:/Perl/bin/Perl.exe

assuming that you chose the default settings during the installation of Perl. Please be certain to type in both the pound sign and the exclamation mark. Naturally, that line may need to be changed if you installed Perl in a different directory.

At this point, your web server is up and running with Perl. The Stainfinder program can also run, but its configuration has not yet been completed.

If you are a novice user who has been following our instructions up to this point, we strongly urge you to have your configuration checked by a systems administrator to ensure that there are no security issues with your configuration.

Please continue with the rest of the Stainfinder walkthrough to complete configuring Stainfinder with your system.

Revision History

Revision history of Deconvoluter program.

Current version is **1.06** (6-1-02).

Earliest supported version is **1.06***. If you are encountering problems, ensure that your current version is this version or higher.*

Deconvoluter Version 1.06, 6/1/02

• **Bug Fix:** There was a bug that causes the Deconvoluter to navigate to the incorrect column if the number of columns in the sectors were different than that of the very first sector. Thanks to Brian Ring of <u>Applied Genomics</u> for pointing out this bug. This bug has now been fixed.

Deconvoluter Version 1.05a, 4/26/02

• **Bug Fix:** The Deconvoluter was not activating the "Output to cluster format" checkbox option when manual operation mode was selected. This has now been fixed.

Deconvoluter Version 1.05, 4/22/02

- **Bug Fix:** There was a subtle bug in how Deconvoluter handled different sector sizes in the master worksheet of the raw scoring workbooks. The TMA-Deconvoluter had been allocating memory incorrectly for TMAs which had the last sector be smaller than the other sectors, resulting in "Subscript out of range" errors. This has now been fixed.
- **New feature:** Deconvoluter now prompts you if you want to input your lookup file, after you generate your file list. If you select "yes", it will then ask for your lookup file and place the file name in the appropriate field, saving you the hassle of typing it in.

Deconvoluter Version 1.04, 4/7/02

- **New feature:** Deconvoluter now checks your lookup file to determine whether the list of unique case identifiers is correct. This will alert the user to any offset in the case numbering.
- **Modification:** Minor changes made to the "Control" worksheet (main screen) of the Deconvoluter.

Deconvoluter Version 1.03, 3/15/02

- **Bug Fix:** Deconvoluter had always assumed that the dimensions of all sectors would be equal to or less than the dimensions of Sector 1. As a result, cases existing outside the dimensions of Sector 1 in the other sectors were being omitted from the output file. This has now been fixed, and Deconvoluter should support TMA layouts where the dimentions of each sector is independent of any of the other sectors.
- **Modification:** Added an option to turn off warning messages for missing Bliss code/slice information. This is useful for people who haven't yet or don't wish to establish operation with Stainfinder at this time.

Deconvoluter Version 1.02, 3/5/02

• **Modification:** Made the "Set Working Dir" more informative for the user.

Deconvoluter Version 1.01, 2/8/02

- **New feature:** enhanced file list generation. Now, instead of prompting the user whether any of all the XLS files found in the current working directory are to be added to the file list, the user gets an Open File dialog box, whereupon selecting the desired files and clicking "Open" will result in the addition of those files into the file list.
- **New feature:** "Set Working Dir" button. It sets the working directory to be the directory containing the Deconvoluter.

Deconvoluter Version 1.00, 5/28/01

• Initial release version.

Frequently Asked Questions (FAQ)

Q: Why do the case numbers appear offset by one in the output file?

A: Your lookup file may have an offset in your case numbers. The TMA-Deconvoluter expects that for given case number n, the row on which it is found is n + 1. For example, if the case identifier is "134", TMA-Deconvoluter expects to find it on row 135. TMA-Deconvoluter also expects the first case identifier to be "1", and versions 1.04 or later will alert you to any errors in your lookup file format.

Q: Why do I get the error: "Runtime error 1004: Cannot rename a sheet to the same name as another sheet, a reference object library, or a workbook referenced by Visual Basic"?

A: You didn't properly reset the TMA-Deconvoluter after your previous use of Deconvoluter. Click "End" to dismiss the dialog box, then go back and reset the Deconvoluter. To do this, click on the "Reset" button in the Control worksheet. The TMA-Deconvoluter needs to be reset after each batch is processed so that it can clean up after itself and prevent errors like these from occurring.

Q: Are there plans for a Macintosh version of the TMA Deconvoluter or any of the other components of the TMA data management system?

A: The short answer: Yes, on a limited basis.

The long answer: The TMA data management system has been optimized for Windowsbased systems, primarily because of the availability of Active X controls on the Windows platform and because the <u>TreeView and Cluster</u> programs are currently available only for Windows operating systems. Because of ongoing requests, a Macintosh-compatible version of the TMA Deconvoluter is currently under development and is meant to only serve as preprocessing of data for users who will eventually view the data on a Windows-based system. This Macintosh-compatible version will have a more limited user interface and features, and it will not be updated as frequently due to the author's limited accessibility to a Macintosh computer. Java-based programs that possess the capabilities of TreeView and Cluster are currently under development by the Stanford Genome Databases Group.

Update (6-26-02): The Java version of TreeView is now available <u>here</u>. Please note that this is a work in progress, so documentation is sparse, and not all features are implemented. You will need to install the Java Runtime Environment in order for the program to work. Please refer to the program website (at the link above) for further details, and please direct questions about this program to the program's author, <u>Alok Saldanha</u>.